Hartismere School

GCSE to AS Physics

Bridging Questions

Solutions

Section A: Standard form and transposing formulae

1.) Make F the subject of P = F/A

 $\mathsf{P}=\mathsf{F}/\mathsf{A},\qquad\mathsf{P}\mathsf{A}=\mathsf{F},\ \underline{\mathsf{F}}=\mathsf{P}\mathsf{A}$

2.) Make x the subject of F = kx

F=kx, F/k=x, x=F/k

3.) Make v the subject of p = mv

P=mv, p/m=v, <u>v=p/m</u>

4.) Make u the subject of v = u + at

v = u + at $v-at = u, \quad u = v - at$

5.) Make s the subject of $v^2 = u^2 + 2as$

 $v^{2} = u^{2} + 2as$ $v^{2} - u^{2} = 2as$ $\frac{v^{2} - u^{2}}{2a} = s$

6.) Make a the subject of $s = 0 + \frac{1}{2} at^2$

$$s = \frac{1}{2}at^2$$
, $2s = at^2$, $\frac{2s}{t^2} = a$

- 7.) Write the following in standard form to 3 significant figures. E.g. $236987325 = 2.37 \times 10^8$
 - i) $23569689253 = 2.36 \times 10^{10}$
 - ii) $12kW = 1.20 \times 10^4 W$
 - iii) $0.00002368 = \frac{2.37 \times 10^{-5}}{10^{-5}}$
 - iv) 12.5nm = $\frac{1.25 \times 10^{-8} m}{10^{-8} m}$
 - v) $1236589 \times 12358 \times 0.123 = \frac{1.88 \times 10^9}{1.88 \times 10^9}$
 - vi) $1569\mu s = \frac{1.57 \times 10^{-3}}{1000}$
 - vii) $10kW \times 15GW = 2.36 \times 10^{10} W$
 - viii) $0.236 \times 10^{-9} \times 3.62 \times 10^{-12} = \frac{8.54 \times 10^{-22}}{10^{-22}}$
 - ix) 15mm x 15mm x 15mm (in m²) $3.38 \times 10^{-6} m^2$
 - x) $3x10^8 / 15THz \frac{2.00 \times 10^{-5}}{2.00 \times 10^{-5}}$
- 6. For each of the following, give the full name of the SI unit used.

(a)	coulomb (1)	1
(b)	farad (1)	1
(C)	hertz (1)	1
(d)	pascal OR newton per square metre (1)	1
(e)	newton per kilogram (1)	1
(f)	weber (1)	1
(g)	becquerel (1)	1
		[Total 7 marks]

Section B: Multiple Choice

D, B, B, D

Section C Other past paper Qs

1.	(i)	energy due to position / height / above the ground depends on gravitational field strength / weight or mgh / wh B1 and symbols defined as mass, gravitational field strength and height / weight and height B1	B1 B1
	(ii)	energy due to movement / motion depends on mass and speed or ½mv ² B1 and symbols defined B1	B1 B1
	(iii)	work is the rate of doing work or rate of using energy (work done/time taken)	B1

[5]

2.	(i)	velocity = displacement / time or rate of change of displacement	B1	
	(ii)	acceleration = <u>change in</u> velocity / time or rate of <u>change of</u> velocity	B1	
				[2]
3.	(i)	Moment is the force \times the perpendicular distance from (the line of action of) the force to the pivot/point		
		(missing perpendicular –1, missing from the force to the pivot / point –1)	B2	
	(ii)	Torque of a couple: one of the forces <i>x</i> perpendicular distance between (the lines of action of) the forces	B1	
		· · · · · · · · · · · · · · · · · · ·		[3]

4. Draw a line from each unit on the left-hand side to the correct equivalent unit on the right-hand side.

Total 2 marks]

5. extension (or compression) ∞ force (as long as elastic limit is not exceeded)

6.	(i)	Stress = force / <u>cross-sectional</u> area	B1	
	(ii)	Strain = extension / <u>original</u> length	B1	
				[2]
7. (a) A brittle material does not have a plastic region / it breaks at its elastic limit.				
	(b) Ultimate tensile strength is breaking stress for a material			
		Materials can be chosen / tested to prevent collapse of the bridge	B1	
				[3]

8.	Ene be ti	rgy cannot be created or destroyed; it can only ansferred/transformed into other forms		
	The	(total) energy of a system remains constant		
	or (tota	l) initial energy = (total) final energy (AW)		
		<i>Allow:</i> 'Energy cannot be created / destroyed / lost'	R1	
			21	[1]
9.	(For	ce is 1 N) when a <u>1 kg</u> mass has an		
	acce	eleration of <u>1 m s</u>		
		Not : '1 kg and 1 m $\underline{s^{-1}}$ '		
		Allow: $(1 N =)$ <u>1 kg</u> × <u>1 m s⁻²</u>	B1	
				[1]
10.	(a)	A quantity that has (both) magnitude / size and direction		
		<i>Not</i> 'A quantity that has direction'		
			B1	
	(b)	Circled /underlined quantities are:		
		Note : All three need to be identified for a mark		
			B1	
				[2]
11.	(a)	<i>immediately</i> after jumping	+ [4]	
	acce	eleration = $g/9.8(1 \text{ m s}^{-2})$	[1]	
	(Allo weig	w 'mg' for weight. Do not allow 'gravity' for		
	weig			
	b Any	efore terminal velocity is reached two from:	[2]	
		- Drag increases (with speed) /drag ∞ speed ²		
		 Net OR resultant OR total force decreases Acceleration is less than g 		
	a	t terminal velocity		
		weight = drag / net force = 0	[1]	
		acceleration = 0 / <u>constant</u> speed or velocity (AW)	[1]	
	(b)	(Transformed to) heat/thermal (energy)		
		Not: 'Friction'/sound	[1]	
	(\mathbf{a})	Any two from:	[0]	
	(C)		[4]	
		1. The terminal velocity increases		
		2. Initial gradient/slope is the same/equal to g		
		3. Time taken to reach terminal velocity is longer	[9 MARKS TOTAL]	

15 8 (NI) **12.** *F*_{*F*}

(i)

12.
$$F_{H} = 20\cos 38 = 15.76 \approx 15.8 (N)$$
 BI

 $F_V = 20\sin 38 = 12.31 \approx 123.3 (N)$
 Allow: 1 mark if vertical and horizontal components have been interchanged
 BI

 13.
 (i) Constant / steady / uniform acceleration (up to 4 s)
 BI

 (i) Constant / steady / uniform acceleration (up to 4 s)
 BI

 (ii) Constant / steady / uniform acceleration (up to 4 s)
 BI

 (iii) Constant / steady / uniform acceleration of s. (m s⁻²)
 BI

 Not Accelerates up to 4 s / uniform motion' for the first BI mark.
 BI

 Not Accelerates at a constant rate'.
 BI

 (iii) Constant / steady / uniform velocity (after 4 s)
 Or Zero acceleration

 Or Tavels at a velocity of 24 (m s⁻¹)
 Allow: 'speed' instead of velocity

 Allow: 'speed' instead of velocity
 Allow: 'speed' instead of velocity

 Allow: The CI mark is for ... distance = $\frac{1}{2}(10 + 24) \times 4.0$
 CI

 distance = 68 (m)
 Allow: Bald 68 (m) scores 2 marks
 Bald $\frac{1}{2}(4 \times 14)$ or 28 (m) scores 1 mark for 'area of triangle'
 AI

 (iii) 1 Answer in the range: 1.1 to 1.2 (s)
 BI
 BI
 CI

 2 Same areas under graphs
 14t = 10t + (0.5 × 3.5 × \tilde{T})
 CI

 (11) $t = 2.28 (s) = 2.3 (s)$
 AI

[7]

[2]

14.	(i)	weig	ht in the range 200 to 1200 (N)	B1	
	(ii)	area	in the range 0.01 to 0.08 (m ²)	B1	
	(iii)	pres	<pre>sure = (i)/(ii) Allow: 1 sf answer</pre>	B1	[3]
15.	(i)	lt ha	s maximum / large / increased <u>stress</u> at this point Allow: it has 'same force but thinner/smaller area' Not: Thin / small area	B1	
	(ii)	The force	tape has (permanent) extension / deformation when the e / stress is removed (AW) Note: Need reference to force or stress removed Allow: 'does not return to original size / shape / length when force / stress is removed'	B1	[2]
16.					
(a)	(i)	use o	of area beneath graphs (1) acceleration section 125 m and deceleration section 50 m (1) constant velocity sections and total 50 m + 200 m + 125 m + 50 m = 425 m (1)	3	
		(ii)	2 straight line sections correct (1) 2 acceleration / deceleration sections correct (1) smooth transition between sections OR zero speed at end (1)	3	
	(b)	(i)	at least three points correctly calculated and drawn (1) straight line towards origin (1)	2	
		(ii)	240 (V) (1)	1	
		(iii)	gradient is reciprocal of the e.m.f. (1)	1	

	(c)	(i)	e.g. $\frac{0.18-1.16}{7.2-6.7} = -\frac{0.98}{0.5} = -1.98$ correct approach for gradient (1) 1.96, 1.97, 1.98 as values for accuracy mark (1) - sign scores 1 (1)	3	
		(ii)	$g \propto 1/r^2$ OR g inversely proportional to the square of the distance from the centre of the Earth (1)	1	[14]
17.	Scale corre	e diag ect tria	ram: ngle / parallelogram drawn on the figure	M1	
	scale	e state	d and correct resultant arrow	A1	
	resul resul	tant fo tant fo	orce 25 to 26 (N) orce 24 to 27 (N)	B2 B1	
	Value calculated: correct triangle drawn correct triangle labelled (arrows and labels which includes the resultant with an arrow in the correct direction)			M1	
				A1	
	valid (12 +	methe 16co	od of calculation: (e.g. cosine rule) / resolve into horizontal s50) and vertical (16sin50) components and use of Pythagoras	C1	
	25.(4) (N)		A1	[4]
18. (a	a)	zero	(do not allow 'small') (1)	1	
	(b)	300 \	W for 1 watt therefore 300 W \times 20 for 20 W 6000 W (1)	1	
	(C)	e.g. i resul a 15 77 K other	f run at 92 K there is a danger that superconductivity will cease as a t of a slight temperature rise (1) K difference provides a safety region (1) is the boiling point of liquid nitrogen (1) r sensible suggestion (1) MAXIMUM (2)	2	

(d) (i) area of cross-section of wire = 10^{-6} m² (1)

current =
$$10^{-6}$$
 m² × 2.0 × 10^{8} A m⁻² (1)
= 200 A (0) 2

(ii)
$$B = \frac{1.26 \times 10^{-6} \times 200 \times 3200}{2 \times 0.30}$$
 (1)
= 1.34 T (1)

(e) (i)
$$F = BQv(1)$$
 1

(ii)
$$BQv = m \times \frac{v^2}{r}$$
 (1)
 $r = mv/BQ$ (1)
 $m = 235 \times 1.66 \times 10^{-27} \text{ kg (1)}$
 $r = \frac{235 \times 1.66 \times 10^{-27} \times 8.3 \times 10^5}{1.34 \times 1.6 \times 10^{-19}} = 1.51 \text{ m (1)}$

[16]