GCSE to AS Physics

Bridging Questions

Solutions

Section A: Standard form and transposing formulae

1.) Make F the subject of $P=F / A$
$P=F / A, \quad P A=F, \quad F=P A$
2.) Make x the subject of $F=k x$

$$
F=k x, \quad F / k=x, x=F / k
$$

3.) Make v the subject of $p=m v$

$$
P=m v, \quad p / m=v, \underline{v=p / m}
$$

4.) Make u the subject of $v=u+a t$

$$
\begin{aligned}
& v=u+a t \\
& v-a t=u, \quad u=v-a t
\end{aligned}
$$

5.) Make s the subject of $v^{2}=u^{2}+2 a s$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& v^{2}-u^{2}=2 a s \\
& \frac{v^{2}-u^{2}}{2 a}=s
\end{aligned}
$$

6.) Make a the subject of $s=0+1 / 2$ at 2

$$
s=\frac{1}{2} a t^{2}, \quad 2 s=a t^{2}, \quad \frac{2 s}{t^{2}}=a
$$

7.) Write the following in standard form to 3 significant figures. E.g. $236987325=2.37 \times 10^{8}$
i) $\quad 23569689253=\underline{2.36 \times 10^{10}}$
ii) $12 \mathrm{~kW}=\underline{1.20 \times 10^{4} \mathrm{~W}}$
iii) $\quad 0.00002368=\underline{2.37 \times 10^{-5}}$
iv) $\quad 12.5 \mathrm{~nm}=\underline{1.25 \times 10^{-8} \mathrm{~m}}$
v) $\quad 1236589 \times 12358 \times 0.123=\underline{1.88 \times 10^{9}}$
vi) $\quad 1569 \mu \mathrm{~s}=\underline{1.57 \times 10^{-3}}$
vii) $10 \mathrm{~kW} \times 15 \mathrm{GW}=\underline{2.36 \times 10^{10} \mathrm{~W}}$
viii) $\quad 0.236 \times 10^{-9} \times 3.62 \times 10^{-12}=\underline{8.54 \times 10^{-22}}$
ix) $\quad 15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 15 \mathrm{~mm}$ (in m^{2}) $\underline{3.38 \times 10^{-6} \mathrm{~m}^{2}}$
x) $3 \times 10^{8} / 15 \mathrm{THz} \underline{2.00 \times 10^{-5}}$
6. For each of the following, give the full name of the SI unit used.
(a) coulomb (1)
(b) farad (1) 1
(c) hertz (1) 1
(d) pascal OR newton per square metre (1) 1
(e) newton per kilogram (1) 1
(f) weber (1) 1
(g) becquerel (1) 1

Section B: Multiple Choice

D, B, B, D

Section C Other past paper Qs

1. (i) energy due to position / height / above the ground
depends on gravitational field strength / weight
or mgh / wh B1 and symbols defined as mass, gravitational field strength and height / weight and height B1
(ii) $\left.\begin{array}{ll}\text { energy due to movement / motion } \\ \text { depends on mass and speed } \\ \text { or } 1 / 2 m v^{2} \text { B1 and symbols defined B1 } & \text { B1 } \\ & \text { B1 } \\ \hline\end{array}\right)$.
(iii) work is the rate of doing work or rate of using energy (work done/time taken)
2. (i) velocity $=$ displacement / time or rate of change of displacement
(ii) acceleration = change in velocity / time or rate of change of velocity
3. (i) Moment is the force \times the perpendicular distance from (the line of action of) the force to the pivot/point (missing perpendicular -1 , missing from the force to the pivot / point -1)
(ii) Torque of a couple: one of the forces x B1 perpendicular distance between (the lines of action of) the forces
4. Draw a line from each unit on the left-hand side to the correct equivalent unit on the right-hand side.

5. extension (or compression) ∞ force (as long as elastic limit is not exceeded)
6. (i) Stress $=$ force / cross-sectional area B1
(ii) Strain $=$ extension / original length B1
7. (a) A brittle material does not have a plastic region / it breaks at its elastic limit.
(b) Ultimate tensile strength is breaking stress for a material B1 Materials can be chosen / tested to prevent collapse of the bridge B1
8. Energy cannot be created or destroyed; it can only be transferred/transformed into other forms
or
The (total) energy of a system remains constant
or
(total) initial energy $=($ total) final energy (AW)
Allow: 'Energy cannot be created / destroyed / lost'
9. (Force is 1 N) when a $\mathbf{1} \mathbf{k g}$ mass has an
acceleration of $\mathbf{1 \mathbf { m ~ s }}{ }^{-}$
Not: ' 1 kg and $1 \mathrm{~m} \underline{\mathrm{~s}^{-1}}$,
Allow: $(1 \mathrm{~N}=) \underline{\mathbf{1 k g} \times \underline{1} \mathrm{~m} \mathrm{~s}^{-2}}$
10. (a) A quantity that has (both) magnitude / size and direction

Not 'A quantity that has direction'
(b) Circled /underlined quantities are: acceleration, displacement and weight

Note: All three need to be identified for a mark
11. (a)... immediately after jumping

Only force is the weight because drag $=0$ OR the net force $=$ weight
acceleration $=g / 9.8\left(1 \mathrm{~m} \mathrm{~s}^{-2}\right)$
(Allow 'mg' for weight. Do not allow 'gravity' for weight.)
... before terminal velocity is reached
Any two from:

- Drag increases (with speed) /drag ∞ speed 2
- Net OR resultant OR total force decreases
- Acceleration is less than g
... at terminal velocity
weight $=$ drag $/$ net force $=0$
acceleration $=0 /$ constant speed or velocity (AW)
(b) (Transformed to) heat/thermal (energy)

Not: 'Friction'/sound
(c) Any two from:

1. The terminal velocity increases
2. Initial gradient/slope is the same/equal to g
3. Time taken to reach terminal velocity is longer
4. $F_{H}=20 \cos 38=15.76 \approx 15.8(\mathrm{~N})$

Allow: 2 sf answers of $16(\mathrm{~N})$ and $12(\mathrm{~N})$

$$
F_{V}=20 \sin 38=12.31 \approx 123.3(\mathrm{~N})
$$

Allow: 1 mark if vertical and horizontal components have been interchanged
13.
(i) Constant / steady / uniform acceleration (up to 4 s)

Or Velocity increases at a steady / constant / uniform rate Or Has acceleration of $3.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$

Not Accelerates up to 4 s / 'uniform motion' for the first B1 mark
Not 'Accelerates at a constant rate'.

Constant / steady / uniform velocity (after 4 s)
Or Zero acceleration
Or Travels at a velocity of $24\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
Allow: 'speed' instead of velocity
Allow: 2 mark for 'Constant acceleration and then constant speed / velocity'
(ii) \quad distance $=$ area (under graph)

Allow: The Cl mark is for \ldots distance $=\frac{1}{2}(10+24) \times 4.0$
distance $=68(\mathrm{~m})$
Allow: Bald 68 (m) scores 2 marks
Bald $\frac{1}{2}(4 \times 14)$ or $28(\mathrm{~m})$ scores 1 mark for 'area of triangle'
(iii) 1 Answer in the range: 1.1 to 1.2 (s)

2 Same areas under graphs
$14 t=10 t+\left(0.5 \times 3.5 \times t^{2}\right)$

$$
t=2.28(\mathrm{~s}) \approx 2.3(\mathrm{~s})
$$

14. (i) weight in the range 200 to 1200 (N)
(iii) pressure = (i)/(ii)

Allow: 1 sf answer
16.
(a) (i) use of area beneath graphs (1) acceleration section 125 m and deceleration section 50 m (1) constant velocity sections and total $50 \mathrm{~m}+200 \mathrm{~m}+125 \mathrm{~m}+50 \mathrm{~m}=425 \mathrm{~m}$ (1)
(ii) 2 straight line sections correct (1)

2 acceleration / deceleration sections correct (1) smooth transition between sections OR zero speed at end (1)
(b) (i) at least three points correctly calculated and drawn (1) straight line towards origin (1)
(ii) $240(\mathrm{~V})(1) \quad 1$
(iii) gradient is reciprocal of the e.m.f. (1) 1
(c) (i) e.g. $\frac{0.18-1.16}{7.2-6.7}=-\frac{0.98}{0.5}=-1.98$ correct approach for gradient (1)
1.96, 1.97, 1.98 as values for accuracy mark (1)

- sign scores 1 (1)
(ii) $g \propto 1 / r^{2} O R g$ inversely proportional to the square of the distance from the centre of the Earth (1)

17. Scale diagram:
correct triangle / parallelogram drawn on the figure
scale stated and correct resultant arrow A1
resultant force 25 to $26(\mathrm{~N}) \quad$ B2
resultant force 24 to $27(\mathrm{~N}) \quad$ B1
Value calculated:
correct triangle drawn M1
correct triangle labelled (arrows and labels which includes the resultant with an arrow in the correct direction)
valid method of calculation: (e.g. cosine rule) / resolve into horizontal (12 + 16 $\cos 50$) and vertical ($16 \sin 50$) components and use of Pythagoras
25.(4) (N)
18. (a) zero (do not allow 'small') (1)
(b) 300 W for 1 watt therefore $300 \mathrm{~W} \times 20$ for 20 W 6000 W (1)
(c) e.g. if run at 92 K there is a danger that superconductivity will cease as a result of a slight temperature rise (1)
a 15 K difference provides a safety region (1)
77 K is the boiling point of liquid nitrogen (1)
other sensible suggestion (1)
2
MAXIMUM (2)
(d) (i) area of cross-section of wire $=10^{-6} \mathrm{~m}^{2}$ (1)

> current $=10^{-6} \mathrm{~m}^{2} \times 2.0 \times 10^{8} \mathrm{~A} \mathrm{~m}^{-2}(1)$
> $=200 \mathrm{~A}(0)$
(ii) $B=\frac{1.26 \times 10^{-6} \times 200 \times 3200}{2 \times 0.30}$ (1)
$=1.34 \mathrm{~T}(1)$
(e) (i) $F=B Q v(1)$
(ii) $B Q v=\mathrm{m} \times \frac{v^{2}}{r}(1)$
$r=m v / B Q(1)$
$m=235 \times 1.66 \times 10^{-27} \mathrm{~kg}(1)$
$r=\frac{235 \times 1.66 \times 10^{-27} \times 8.3 \times 10^{5}}{1.34 \times 1.6 \times 10^{-19}}=1.51 \mathrm{~m}(1)$
(iii) circular paths for both ions (1)

U-235 ion with slightly smaller radius (1)
paths curving upwards (1)

